netneurotools.metrics.communicability_bin
- netneurotools.metrics.communicability_bin(adjacency, normalize=False)[source]
Compute the communicability of pairs of nodes in adjacency.
- Parameters:
adjacency ((N, N) array_like) – Unweighted, direct/undirected connection weight/length array
normalize (bool, optional) – Whether to normalize adjacency by largest eigenvalue prior to calculation of communicability metric. Default: False
- Returns:
comm – Symmetric array representing communicability of nodes {i, j}
- Return type:
(N, N) numpy.ndarray
References
Estrada, E., & Hatano, N. (2008). Communicability in complex networks. Physical Review E, 77(3), 036111.
Examples
>>> from netneurotools import metrics
>>> A = np.array([[1, 0, 1], [0, 1, 1], [1, 0, 1]]) >>> Q = metrics.communicability_bin(A) >>> Q array([[4.19452805, 0. , 3.19452805], [1.47624622, 2.71828183, 3.19452805], [3.19452805, 0. , 4.19452805]])