netneurotools.spatial.local_gearys_c
- netneurotools.spatial.local_gearys_c(annot, weight, use_sampvar=True)[source]
Calculate local Geary’s C for spatial autocorrelation.
- Parameters:
annot (array-like, shape (n,)) – Array of annotations to calculate Geary’s C for.
weight (array-like, shape (n, n)) – Spatial weight matrix. Note that we do not explicitly check for symmetry in the weight matrix, nor zero-diagonal elements.
use_sampvar (bool, optional) – Whether to use sample variance (n - 1) in calculation. Default: True.
- Returns:
local_gearys_c – Local Geary’s C values for the given annotations and weight matrix.
- Return type:
array, shape (n,)
Notes
Local Geary’s C is calculated as:
\[C_i = \frac{w_{ij} (x_i - x_j)^2}{\sum_{j=1}^n w_{ij} (x_i - x_j)^2}\]where \(n\) is the number of observations, \(w_{ij}\) is the spatial weight between observations \(i\) and \(j\), \(x_i\) is the annotation for observation \(i\), and \(\bar{x}\) is the mean annotation value.
The value can be tested using the R pacakge
spdep
:x <- rnorm(100) m <- matrix(runif(100*100), nrow=100) localC(v, mat2listw(m))