netneurotools.spatial.morans_i
- netneurotools.spatial.morans_i(annot, weight, use_numba=False)[source]
Calculate Moran’s I for spatial autocorrelation.
- Parameters:
annot (array-like, shape (n,)) – Array of annotations to calculate Moran’s I for.
weight (array-like, shape (n, n)) – Spatial weight matrix. Note that we do not explicitly check for symmetry in the weight matrix, nor zero-diagonal elements.
use_numba (bool, optional) – Whether to use numba for calculation. Default: True (if numba is installed).
- Returns:
morans_i – Moran’s I value for the given annotations and weight matrix.
- Return type:
Notes
Moran’s I is calculated as:
\[I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}\]where \(n\) is the number of observations, \(w_{ij}\) is the spatial weight between observations \(i\) and \(j\), \(x_i\) is the annotation for observation \(i\), and \(\bar{x}\) is the mean annotation value.
The value can be tested using the R pacakge
spdep
:x <- rnorm(100) m <- matrix(runif(100*100), nrow=100) w <- mat2listw(m) moran(v, w, 100, Szero(w)) # or moran.test(x, w)
See also
netneurotools.spatial.spatial_stats.local_morans_i